multibias_adjust
returns the exposure-outcome odds ratio and confidence
interval, adjusted for one or more biases.
Arguments
- data_observed
Object of class
data_observed
corresponding to the data to perform bias analysis on.- data_validation
Object of class
data_validation
corresponding to the validation data used to adjust for bias in the observed data. The validation data should have data for the same variables as indata_observed
, plus data for the missing variables leading to bias.- bias_params
Object of class 'bias_params' corresponding to the bias parameters used to adjust for bias in the observed data. There must be parameters corresponding to the bias or biases specified in
data_observed
.- level
Value from 0-1 representing the full range of the confidence interval. Default is 0.95.
Value
A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).
Details
Bias adjustment can be performed by inputting either a validation dataset or
the necessary bias parameters. Values for the bias parameters
can be applied as fixed values or as single draws from a probability
distribution (ex: rnorm(1, mean = 2, sd = 1)
). The latter has
the advantage of allowing the researcher to capture the uncertainty
in the bias parameter estimates. To incorporate this uncertainty in the
estimate and confidence interval, this function should be run in loop across
bootstrap samples of the dataframe for analysis. The estimate and
confidence interval would then be obtained from the median and quantiles
of the distribution of odds ratio estimates.
Examples
# Adjust for exposure misclassification -------------------------------------
df_observed <- data_observed(
data = df_em,
bias = "em",
exposure = "Xstar",
outcome = "Y",
confounders = "C1"
)
# Using validation data
df_validation <- data_validation(
data = df_em_source,
true_exposure = "X",
true_outcome = "Y",
confounders = "C1",
misclassified_exposure = "Xstar"
)
multibias_adjust(
data_observed = df_observed,
data_validation = df_validation
)
#> $estimate
#> [1] 2.123305
#>
#> $ci
#> [1] 2.041413 2.208482
#>
# Using bias_params
bp <- bias_params(coef_list = list(x = c(-2.10, 1.62, 0.63, 0.35)))
multibias_adjust(
data_observed = df_observed,
bias_params = bp
)
#> $estimate
#> [1] 2.050886
#>
#> $ci
#> [1] 1.971682 2.133272
#>
# Adjust for three biases ---------------------------------------------------
df_observed <- data_observed(
data = df_uc_om_sel,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
# Using validation data
df_validation <- data_validation(
data = df_uc_om_sel_source,
true_exposure = "X",
true_outcome = "Y",
confounders = c("C1", "C2", "C3", "U"),
misclassified_outcome = "Ystar",
selection = "S"
)
multibias_adjust(
data_observed = df_observed,
data_validation = df_validation
)
#> $estimate
#> [1] 2.051169
#>
#> $ci
#> [1] 1.998335 2.105399
#>
# Using bias_params
bp1 <- bias_params(
coef_list = list(
u = c(-0.32, 0.59, 0.69),
y = c(-2.85, 0.71, 1.63, 0.40, -0.85, 0.22),
s = c(0.00, 0.74, 0.19, 0.02, -0.06, 0.02)
)
)
multibias_adjust(
data_observed = df_observed,
bias_params = bp1
)
#> $estimate
#> [1] 1.992133
#>
#> $ci
#> [1] 1.940813 2.044810
#>
bp2 <- bias_params(
coef_list = list(
u1y0 = c(-0.20, 0.62, 0.01, -0.08, 0.10, -0.15),
u0y1 = c(-3.28, 0.63, 1.65, 0.42, -0.85, 0.26),
u1y1 = c(-2.70, 1.22, 1.64, 0.32, -0.77, 0.09),
s = c(0.00, 0.74, 0.19, 0.02, -0.06, 0.02)
)
)
multibias_adjust(
data_observed = df_observed,
bias_params = bp2
)
#> $estimate
#> [1] 1.994691
#>
#> $ci
#> [1] 1.943281 2.047462
#>